FACE™ ERK1/2 ELISA Kits

(version E)

Catalog Nos. 48140 & 48640 (ERK1/2) Catalog Nos. 48240 & 48740 (ERK1/2 Chemi)

Active Motif North America

1914 Palomar Oaks Way, Suite 150 Carlsbad, California 92008, USA Toll free: 877 222 9543

Telephone: 760 431 1263 Fax: 760 431 1351

Active Motif Europe

1104 Avenue Franklin Roosevelt B-1330 Rixensart, Belgium

UK Free Phone: 0800 169 31 47
France Free Phone: 0800 90 99 79
Germany Free Phone: 0800 181 99 10
Telephone: +32 (0)2 653 0001
Fax: +32 (0)2 653 0050

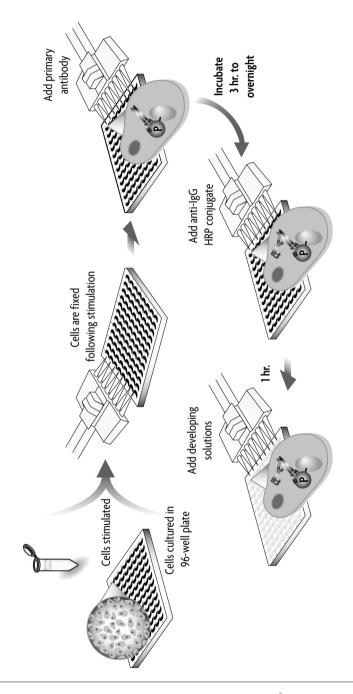
Active Motif Japan

Azuma Bldg, 7th Floor 2-21 Ageba-Cho, Shinjuku-Ku Tokyo, 162-0824, Japan

Telephone: +81 3 5225 3638 Fax: +81 3 5261 8733

TABLE OF CONTENTS	Page
Overview	1
Flow Chart of Process	2
Introduction	
ERK1/2 (p44/p42 MAP Kinase) Traditional Kinase Assays FACE ERK1/2	3
Kit Performance and Benefits	5
FACE ERK1/2 Experimental Design	6
Kit Components and Storage - Colorimetric Assay	7
Kit Components and Storage - Chemiluminescent Assay	8
Protocols - Colorimetric Assay	
Buffer Preparation and Recommendations	
Quick Chart for Preparing Buffers	
Adherent Cell Protocol	
Non-Adherent Cell Protocol	14
Protocols - Chemiluminescent Assay	
Buffer Preparation and Recommendations	
Quick Chart for Preparing Buffers	
Adherent Cell Protocol	
References	20
Appendix	
Section A. Troubleshooting Guide	
Section B. Related Products	23
Tochnical Services	2/

Overview


The extracellular signal-regulated kinases 1 and 2 (ERK1 and ERK2), also called p44 and p42 MAP kinases, are members of the Mitogen Activated Protein Kinase (MAPK) family of proteins found in all eukaryotes¹. Because the 44 kDa ERK1 and the 42 kDa ERK2 are highly homologous and both function in the same protein kinase cascade, the two proteins are often referred to collectively as ERK1/2 or p44/p42 MAP kinase. The ERK1/2 signaling cascade has been shown to be a critical regulator of cell differentiation, cell physiology and neuronal function²⁻⁶. Aberrant control of ERK1/2 activity has been implicated in a variety of pathological conditions, including cancer and autoimmune diseases^{7, 8}, and efficient study methods are in demand.

Fast Activated Cell-based ELISA (FACE™)* Kits provide a simple, efficient, cell-based method to monitor proteins activated by phosphorylation. FACE ERKI/2 Kits are designed specifically to quantify activated (phosphorylated) ERKI/29 and/or total ERKI/2. In the FACE method, cells are cultured in 96-well plates and stimulated to induce the pathway of interest. Following stimulation, the cells are rapidly fixed to preserve activation-specific protein modifications. Each well is then incubated with a primary antibody that recognizes either phosphorylated ERKI/2 or total ERKI/2. Subsequent incubation with secondary HRP-conjugated antibody and developing solution provides an easily quantified colorimetric or chemiluminescent readout. The relative number of cells in each well is then determined using the provided Crystal Violet solution. The 96-well plate format is suitable for high-throughput screening applications. FACE ERKI/2 Kits are available in two sizes:

product	format	catalog no.
FACE ERK1/2	1 x 96 rxns	48140
	5 x 96 rxns	48640
FACE ERK1/2 Chemi	1 x 96 rxns	48240
	5 x 96 rxns	48740

See Active Motif products related to ERK in Appendix, Section B.

^{*} Developed in collaboration with Dr. M. Peppelenbosch and Dr. H. Versteeg.

Introduction

ERK1/2 (p44/p42 MAP Kinase)

Extracellular signal-regulated kinases 1 and 2 (ERK1/2), also called p44 and p42 MAP kinases (p44/p42), are members of the Mitogen Activated Protein Kinase (MAPK) family of serine/threonine protein kinases. Activated MAPKs phosphorylate specific serines and threonines on target protein substrates and function as late-stage messengers in signaling cascades, which convey external stimuli from the cell surface to cellular targets such as translation machinery, cytoskeletal proteins and transcription factors¹⁰.

Signaling cascades that result in the activation of ERK1/2 can be initiated through a variety of receptors involved in growth and differentiation, including receptor tyrosine kinases (RTKs), integrins and ion channels¹²⁻¹⁴. Once activated, ERK1/2 can phosphorylate and regulate a variety of proteins. Cytosolic ERK1/2 targets include cytoskeletal proteins and kinases that regulate protein translation^{1, 16}. Activated ERK1/2 is also imported into the nucleus, where its phosphorylation targets include the transcription factors Elk-1, c-Jun, STAT1 and 3, Ets-1, c-Myc, ER, CREB and PPARy^{1, 15-17}.

The ERK1/2 cascade plays a crucial role in neuronal cells and has been studied extensively in recent years for its involvement in synaptic plasticity and memory function^{6, 18}. For example, ERK has been shown to be potently activated by phosphorylation after a synaptically driven increase in intracellular calcium^{19, 20}. In addition, experiments performed on rats have shown that activation of ERK is required for memory consolidation of auditory fear conditioning⁶. And, ERK has been shown to be essential for the maintenance of neuronal function and plasticity following traumatic brain injury^{21, 22}.

The Raf/MEK/ERK (MAPK) signal transduction cascade has been shown to regulate cell cycle progression and apoptosis in diverse cell types^{11, 23}. Aberrant control of this cascade is often observed in transformed cell lines and is frequently linked with human cancers. ERK1/2 has also been shown to play an important role in oncogenicity and in the degree of progression within the mouse skin carcinogenesis system²⁴. Important apoptotic regulators modulated by ERK1/2 activity include Bad and Bcl-2²⁵.

Traditional Kinase Assays

To date, two methods are widely used to perform kinase assays:

- 1. One method typically used is the in-gel kinase assay, which is an activity staining technique used to study protein kinases²⁶. A given protein substrate is immobilized on a gel and phosphorylated by protein kinases, which are separated by SDS-PAGE. The bands of incorporated [³²P]phosphate are then visualized by autoradiography. While this method is sensitive, it is also cumbersome and is not suitable to high-throughput applications. In-gel kinase assays also require special precautions and equipment for handling radioactivity.
- 2. Another method used is Western blot analysis. Western blots are performed using antibodies that recognize only the phosphorylated version of the protein of interest. Although less tedious than in-gel kinase assays, Western blotting, like in-gel kinase, requires the preparation of nuclear or whole-cell extract and separation by SDS-PAGE. Furthermore, this process is expensive due to the large quantity of phospho-specific antibody required.

FACE ERK1/2

ERKI/2 is a critical regulator of a variety of cellular processes, which has made it an interesting target in both basic and pharmaceutical research. However, these efforts have been hampered by the lack of convenient and high-throughput assays suitable for quantifying ERK activation (phosphorylation).

To overcome this, Active Motif has introduced its FACE™ (Fast Activated Cell-based ELISA) Kits. These are highly sensitive 96-well assays designed for detecting activated proteins within mammalian cells. Unlike Western blot, FACE assays do not require cell extracts, electrophoresis or membrane blotting. And, unlike typical kinase assays, FACE assays are non-radioactive and simple to perform. Each FACE ERK1/2 Kit contains two 96-well plates and two primary antibodies. The phospho-ERK antibody was raised in rabbit against a synthetic phospho-peptide corresponding to residues Thr202 and Tyr204 of human ERK1 and Thr185 and Tyr187 of human ERK2. This antibody recognizes both phosphorylated ERK1 and ERK2. This antibody does not recognize unphosphorylated ERK1 or ERK2, nor does it recognize other phosphorylated proteins. The total-ERK antibody recognizes ERK1 and ERK2 regardless of the phosphorylation state. Each antibody is provided in a quantity sufficient for one 96-well assay.

FACE ERK Kits can be used to study phosphorylated ERK relative to cell number. In this application, cells are cultured in the wells of one of the provided 96-well plates, treated as desired and then assayed using the FACE protocol with only the phospho-ERK antibody. The relative number of cells in each well is then determined through use of the Crystal Violet reagent. In this application, the second 96-well plate can be kept on reserve in case of culturing problems or two 48-well assays can be performed.

FACE ERK Kits can also be used to determine ERK phosphorylation relative to the total ERK protein found in the cells. In this application, the two 96-well plates are cultured as replicates, with the wells within each plate treated with reagents that may affect the phosphorylation state of ERK. After the cells are fixed, one plate is studied with the phospho-ERK antibody, while the other plate is studied with the total-ERK antibody. The relative number of cells in each well is then determined through use of the Crystal Violet reagent. Once the phospho-ERK and total-ERK signals have been normalized for cell number, a comparison of the ratio of phosphorylated ERK to total ERK for each of the cell growth conditions can be made.

In the FACE ERK assay, the provided total-ERK antibody can be used as a positive control to demonstrate that the cells contain ERK, the kit reagents are functional and that the protocol is performed correctly. Also, because fixed cells are stable for several weeks, you can prepare many plates simultaneously and then perform the FACE assay when desired. Fixed cells should be stored refrigerated in a zip-lock or heat-sealed bag with the formaldehyde solution in the wells.

Kit Performance and Benefits

FACE ERK1/2 Kits are for research use only. Not for use in diagnostic procedures.

Antibody specificity: The phospho-ERK antibody is specific for phosphorylated ERK1 and ERK2 and was raised against a synthetic phospho-peptide corresponding to residues Thr202 and Tyr204 of human ERK1 and Thr185 and Tyr187 of human ERK2. This antibody recognizes both phosphorylated ERK1 and ERK2. It does not recognize unphosphorylated ERK1 or ERK2, nor does it recognize other phosphorylated proteins. The total-ERK antibody recognizes ERK1 and ERK2 regardless of the phosphorylation state.

Cross-reactivity: FACE ERK Kits detect phosphorylated ERK1 and ERK2 from human, mouse, rat, chicken, hamster and Zebrafish origin and total ERK1 and ERK2 from human, mouse, rat, chicken and frog origin.

Assay time: < 3 hours of hands-on time.

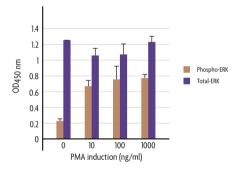


Figure 1: Measurement of phosphorylated and total ERK.

Murine Macrophage 4/4 cells were cultured in 96-well plates and serum-starved for 16 hours.

Cells were then stimulated with the indicated amounts of Phorbol 12-myristate 13-acetate (PMA) for 10 minutes and fixed. Total and phospho ERK were each assayed in triplicate using the phospho and total ERK antibodies included in the FACE ERKI/2 Kit. Data was plotted after correction for cell number (performed through use of Crystal Violet). Note that the induction treatment did not affect the overall level of total ERK.

Note on data interpretation

The phospho-ERK and total-ERK antibodies can be used on equivalent cell cultures to determine the effects of various cell treatments on the ratio of phosphorylated ERK to total ERK. However, if the signals obtained with the phospho-ERK antibody and the total-ERK antibody are identical, one cannot conclude that the treatment resulted in phosphorylation of 100% of the ERK.

FACE ERK Experimental Design

The FACE ERK assay is a high-throughput method for quantifying cellular levels of ERK and phosphorylated ERK. It should be used with cell types that have been shown to contain readily detectable levels of ERK and, under appropriate induction conditions, phosphorylated ERK.

Before starting a FACE assay, it is necessary to determine the experimental conditions for each well of the 96-well plate to maximize the information obtained.

Points to consider:

- 1. Are you working with adherent or non-adherent cells? Protocol modifications for use of non-adherent cells are given after the protocol for adherent cells.
- 2. Do you want to compare phosphorylated ERK to total ERK? If so, replicate wells must be cultured so that the two different antibodies can be used on equivalently grown cells.
- Which wells will be used as positive controls (e.g. incubated with the total-ERK antibody) and which will be used as negative controls (e.g. incubated with secondary antibody alone)?
- 4 Each experimental condition should be performed in duplicate or in triplicate to control for possible errors.
- 5 FACE assays are most easily performed when all 96 wells of the assay plate are used. This makes it possible to perform washing steps by "flicking" liquid from the plate into a sink. The inverted plate is then tapped gently onto several layers of paper towel to remove the remaining liquid. See "Kit Components" section if you need additional 96-well plates.
- 6. Fixed cells are stable for several weeks, so you can prepare many plates simultaneously and then perform the FACE assay when desired. Fixed cells should be stored with the formaldehyde solution in the wells and then sealed in a zip-lock bag or, preferably, a heat-sealed bag and refrigerated.

After planning the experiment, determine the amount of each buffer/reagent required and prepare according to the Quick Chart for Preparing Buffers. Multi-channel pipettors and pipettor reservoirs should be used when appropriate. The volumes given are appropriate for multi-channel pipetting if the assay is performed on 48 wells or more. Volumes may need to be adjusted if the assay is performed on less than 48 wells.

Kit Components and Storage - Colorimetric Assay

FACE Colorimetric Kit components can be stored at -20°C prior to first use. Then, we recommend storing each component at the temperature indicated in the table below.

Reagents	Quantity 1 plate / 5 plates	Storage / Stability
Phospho-ERK antibody	18 µl / 90 µl	-20°C for 6 months
Total-ERK antibody	9 μl / 45 μl	4°C for 6 months
Anti-rabbit HRP-conjugated IgG	11 µl / 55 µl	4°C for 6 months
1X Antibody Blocking Buffer	22 ml / 110 ml	-20°C for 6 months
1X Antibody Dilution Buffer	30 ml / 150 ml	-20°C for 6 months
10X PBS	120 ml / 600 ml	Room temperature for 6 months
10% Triton X-100	7 ml / 35 ml	Room temperature for 6 months
Crystal Violet Solution	22 ml / 110 ml	4°C for 6 months
Developing Solution	22 ml / 110 ml	4°C for 6 months
Stop Solution	22 ml / 110 ml	4°C for 6 months
1% SDS Solution	22 ml / 110 ml	Room temperature for 6 months
96-well tissue culture plate*	2 / 10	
Plate sealing tape	2 / 10	

^{*} Suitable tissue culture plates are Greiner part no. 655180 and Corning Costar part no. 3596.

Additional materials required

- Multi-channel pipettor
- Multi-channel pipettor reservoirs
- · Rocking platform
- Parafilm
- Microplate spectrophotometer capable of reading at 595 nm and at 450 nm (655 as optional reference wavelength)
- Fresh 10% hydrogen peroxide (H2O2) in dH2O (3 ml are required)
- 10 mg/ml poly-L-Lysine (if using non-adherent cells)
- 10% Sodium Azide (NaN₃) in dH₂O (250 μl are required)
- 37% Formaldehyde (2.5 ml are required for adherent cells; 5.0 ml required for non-adherent cells)

WARNING: Sodium Azide and Formaldehyde are highly toxic chemicals. Appropriate safety precautions (gloves and eye protection) should be used. In addition, formaldehyde is highly toxic by inhalation and should be used only in a ventilated hood.

Kit Components and Storage - Chemiluminescent Assay

FACE Chemi Kit components can be stored at -20°C prior to first use. Then, we recommend storing each component at the temperature indicated in the table below.

Reagents	Quantity 1 plate / 5 plates	Storage / Stability
Phospho-ERK antibody	9 µl / 45 µl	-20°C for 6 months
Total-ERK antibody	9 µl / 45 µl	4°C for 6 months
Anti-rabbit HRP-conjugated IgG	11 µl / 55 µl	4°C for 6 months
1X Antibody Blocking Buffer	22 ml / 110 ml	-20°C for 6 months
1X Antibody Dilution Buffer	30 ml / 150 ml	-20°C for 6 months
10X PBS	120 ml / 600 ml	Room temperature for 6 months
10% Triton X-100	7 ml / 35 ml	Room temperature for 6 months
Crystal Violet Solution	22 ml / 110 ml	4°C for 6 months
Chemiluminescent Reagent	4 ml / 20 ml	4°C for 6 months
Reaction Buffer	8 ml / 40 ml	4°C for 6 months
1% SDS Solution	22 ml / 110 ml	Room temperature for 6 months
96-well tissue culture plate*	2 / 10	
Plate sealing tape	2 / 10	

^{*} Suitable tissue culture plates are Greiner part no. 655098.

Additional materials required

- Multi-channel pipettor
- · Multi-channel pipettor reservoirs
- · Rocking platform
- · Parafilm
- Microplate spectrophotometer capable of reading at 595 nm for Crystal Violet staining
- Microplate luminometer or CCD camera-coupled imaging system for chemiluminescent detection
- Fresh 10% hydrogen peroxide (H₂O₂) in dH₂O (3 ml are required)
- 10 mg/ml poly-L-Lysine (if using non-adherent cells)
- 10% Sodium Azide (NaN₃) in dH₂O (250 μl are required)
- 37% Formaldehyde (2.5 ml are required for adherent cells; 5.0 ml required for non-adherent cells)

WARNING: Sodium Azide and Formaldehyde are highly toxic chemicals. Appropriate safety precautions (gloves and eye protection) should be used. In addition, formaldehyde is highly toxic by inhalation and should be used only in a ventilated hood.

Protocols - Colorimetric Assay

Buffer Preparation and Recommendations

We provide an excess of buffer components in order to perform one 96-well FACE assay with the phospho-ERK antibody and one 96-well FACE assay with the total-ERK antibody. Required reagents that are not supplied are listed on the previous page. Please review the Quick Chart for Preparing Buffers in this section prior to preparing the assay buffers.

Preparation of 1X PBS

1X PBS is the basis of several buffers used in the FACE protocol. 1X PBS is also used in several of the wash steps in the protocol (see the Quick Chart for Preparing Buffers). It is prepared by adding 1 volume of 10X PBS (pH 7.4) to 9 volumes of dH₂O and mixing thoroughly.

Preparation of Fixing Buffer (4% or 8% Formaldehyde in PBS)

Fixing Buffer is used to fix cells after cell culturing. It is prepared by adding formaldehyde to 1X PBS and mixing well. 4% formaldehyde is used with adherent cells, 8% formaldehyde is used with non-adherent cells. The recipe in the Quick Chart for Preparing Buffers is written for use with a stock solution of 37% formaldehyde.

Preparation of Wash Buffer (0.1% Triton X-100 in PBS)

Wash Buffer is used throughout the FACE protocol and is prepared by adding the provided 10% Triton X-100 solution to 1X PBS and mixing thoroughly.

Quenching Buffer (Wash Buffer containing 1% H₂O₂ and 0.1% Azide)

Quenching Buffer is used to inactivate the cells' endogenous peroxidase activity. It is prepared by adding fresh Sodium Azide and fresh hydrogen peroxide to the Wash Buffer.

Blocking Buffer

This is supplied ready-to-use. A small amount of white precipitate may form if thawed in a warm water bath. This does not interfere with buffer function.

Antibody Dilution Buffer

This is supplied ready-to-use. A small amount of white precipitate may form if thawed in a warm water bath. This does not interfere with buffer function.

Diluted phospho-ERK antibody

The phospho-ERK antibody recognizes only the phosphorylated form of the ERKI/2 proteins. The supplied antibody will be diluted 1/250 in Antibody Dilution Buffer (see the Quick Chart for Preparing Buffers in this section).

Diluted total-ERK antibody

The total-ERK antibody recognizes both the non-phosphorylated and the phosphorylated forms of ERKI/2 proteins. The supplied antibody will be diluted 1/500 in Antibody Dilution Buffer (see the Quick Chart for Preparing Buffers in this section).

Diluted HRP-conjugated secondary antibody

HRP-conjugated anti-rabbit IgG is used as the secondary antibody to detect bound primary antibodies. The supplied antibody will be diluted 1/2000 in Antibody Dilution Buffer. (See the Quick Chart for Preparing Buffers in this section).

1% SDS Solution

1% SDS Solution is used in the Crystal Violet counting procedure to solubilize cells and release the dye for subsequent quantification at 595 nm. This buffer is supplied ready-to-use.

Crystal Violet Solution

This is supplied ready-to-use. Crystal Violet is used to determine the relative number of cells in each well. This stain binds to cell nuclei and gives an OD_{595} reading that is proportional to cell number.

Developing Solution

The Developing Solution must be warmed to room temperature before use. This solution is light sensitive, therefore, we recommend avoiding direct exposure to intense light during storage. The Developing Solution may develop a yellow hue over time. This does not affect product performance. A blue color present in the solution indicates that it has been contaminated and must be discarded. Prior to use, transfer the amount of Developing Solution required for the assay into a secondary container (see the Quick Chart for Preparing Buffers in this section), avoid direct exposure to intense light and leave at room temperature for at least 1 hour. After use, discard any remaining solution that was transferred into the secondary container.

Stop Solution

Prior to use, transfer the amount of Stop Solution required for the assay into a secondary container (see the Quick Chart for Preparing Buffers in this section). After use, discard any remaining Stop Solution that was transferred into the secondary container.

WARNING: The Stop Solution is corrosive. Wear personal protective equipment when handling, *i.e.* labcoat, gloves and eye protection.

Quick Chart for Preparing Buffers - Colorimetric Assay

Reagents to prepare	Components	1 well	48 wells	96 wells	192 wells
Fixing Buffer for	1X PBS	98 µl	4.7 ml	9.41 ml	18.82 ml
adherent cells	37% Formaldehyde	12 µl	576 μl	1.15 ml	2.30 ml
	TOTAL REQUIRED	110 µl	5.28 ml	10.56 ml	21.12 ml
Fixing Buffer for non-	1X PBS	86.0 µl	4.13 ml	8.26 ml	16.51 ml
adherent cells	37% Formaldehyde	24.0 µl	1.15 ml	2.30 ml	4.61 ml
	TOTAL REQUIRED	110 µl	5.28 ml	10.56 ml	21.12 ml
Wash Buffer	1X PBS	3.376 ml	162 ml	310 ml	620 ml
	10% Triton X-100	34.1 µl	1.64 ml	3.13 ml	6.26 ml
	TOTAL REQUIRED	3.41 ml	163.7 ml	313 ml	626 ml
Quenching Buffer	Wash Buffer	97.9 µl	4.7 ml	9.40 ml	18.8 ml
	10% H ₂ O ₂	11 µl	528 µl	1.06 ml	2.11 ml
	10% Azide	1.1 µl	52.8 µl	106 µl	211 µl
	TOTAL REQUIRED	110 µl	5.28 ml	10.56 ml	21.12 ml
Blocking Buffer	TOTAL REQUIRED	110 µl	5.28 ml	10.56 ml	21.12 ml
Diluted total-ERK	Antibody Dilution Buffer	45 µl	2080 μl	4160 µl	-
antibody	Total-ERK antibody	0.09 μl	4.16 µl	8.32 µl	1
	TOTAL REQUIRED	45.09 μl	2084.16 μl	4168.32 µl	-
Diluted phospho-ERK	Antibody Dilution Buffer	45 µl	2080 µl	4160 µl	-
antibody	Phospho-ERK antibody	0.18 µl	8.32 µl	16.64 µl	-
	TOTAL REQUIRED	45.18 μl	2088.32 μl	4176.64 µl	-
Diluted HRP-con-	Antibody Dilution Buffer	110 µl	5280 μl	10.56 ml	21.12 ml
jugated secondary antibody	HRP-conjugated secondary ab	0.055 μl	2.64 µl	5.28 µl	10.56 µl
	TOTAL REQUIRED	110.05 µl	5282.64 μl	10.565 ml	21.13 ml
1X PBS	10X PBS	154 µl	7.39 ml	14.11 ml	28.22 ml
(for wash steps)	dH ₂ O	1.39 ml	66.53 ml	127.01 ml	254.02 ml
	TOTAL REQUIRED	1.54 ml	73.92 ml	141.12 ml	282.24 ml
1% SDS Solution	TOTAL REQUIRED	110 µl	5.28 ml	10.56 ml	21.12 ml
Developing Solution	TOTAL REQUIRED	110 µl	5.28 ml	10.56 ml	21.12 ml
Stop Solution	TOTAL REQUIRED	110 µl	5.28 ml	10.56 ml	21.12 ml
Crystal Violet Solution	TOTAL REQUIRED	110 µl	5.28 ml	10.56 ml	21.12 ml

Adherent Cell Protocol - Colorimetric Assay

PLEASE READ THE ENTIRE PROTOCOL BEFORE STARTING

Step 1: Culture, fix and block cells

- Seed cells in the 96-well plate so that they will be approximately 80% confluent at the time
 of fixing, after they have been treated as desired. The growth area in each well of the 96well plate is 0.32 cm². The provided plates are sterile and treated for tissue culture.
- 2. Grow and treat cells as desired.
- 3. Fix cells by replacing the growth medium with $100 \, \mu l$ of 4% formaldehyde in PBS. To minimize the escape of formaldehyde vapors, place a $10 \, cm \, x$ 17 cm piece of parafilm over the plate and then cover the plate with the lid. The covered plate can also be placed in a ziplock bag. Incubate for 20 minutes at room temperature.

WARNING: Formaldehyde is highly toxic. Confine vapors to a chemical hood and wear appropriate gloves and eye protection when using this chemical.

- 4. Remove formaldehyde solution and wash cells 3 times with 200 μ l Wash Buffer. Each wash step should be performed for 5 minutes with gentle shaking.
- 5. Remove Wash Buffer, add 100 μ l Quenching Buffer and incubate for 20 minutes at room temperature.
- Remove Quenching Buffer and wash cells 2 times for 5 minutes each with 200 μl Wash Buffer
- 7. Remove Wash Buffer, add 100 μ l Antibody Blocking Buffer and incubate 1 hour at room temperature.

Step 2: Binding of primary and secondary antibodies

NOTE: Depending on experiment design, some wells may be incubated with diluted phospho-ERK antibody, some with total-ERK antibody and some with secondary antibody alone (negative controls). For negative control wells, incubate with 40 µl Antibody Dilution Buffer during primary antibody incubation step.

- 1. Remove Antibody Blocking Buffer and wash cells 2 times with 200 µl Wash Buffer.
- 2. Remove Wash Buffer, add 40 µl of diluted primary antibody (or Antibody Dilution Buffer for negative control wells) and seal plate with sealing tape. Place a 10 cm x 17 cm piece of parafilm over the plate, cover with lid and incubate overnight at 4°C. Be sure that the plate is level and that each well is tightly sealed with the sealing tape to prevent evaporation.
 - **NOTE:** In cells known to generate high amounts of phosphorylated-ERK, a three hour primary antibody incubation is sufficient. For maximum sensitivity an overnight incubation is recommended.
- 3. Remove primary antibody, wash cells 3 times for 5 minutes each with 200 µl Wash Buffer.

- 4. Remove Wash Buffer, add 100 μl diluted secondary antibody, cover plate with tissue culture plate lid or sealing tape, and incubate 1 hour at room temperature.
- 5. During this incubation, transfer the amount of Developing Solution required for the assay into a secondary container and leave at room temperature for at least an hour (avoid light).

Step 3: Colorimetric reaction

- 1. Remove secondary antibody, wash cells 3 times for 5 minutes with 200 μ l Wash Buffer and then 2 times for 5 minutes with 200 μ l 1X PBS.
- 2. Transfer the amount of Developing Solution required for the assay into a secondary container. Remove PBS from plate wells and add 100 μ l Developing Solution to each well.
- Incubate 2-20 minutes at room temperature protected from direct light. Monitor the blue color development until the darkest-staining wells are medium- to dark-blue. Do not overdevelop.
- 4. Add 100 μ l Stop Solution. This acidic solution turns the blue color to yellow. Take care with pipetting to ensure that each well is developed for the same amount of time.
 - **WARNING:** The Stop Solution is corrosive. Wear personal protective equipment when handling, *i.e.* labcoat, gloves and eye protection.
- 5. Read absorbance on a spectrophotometer within 5 minutes at 450 nm with an optional reference wavelength of 655 nm.

OPTIONAL - Crystal Violet cell staining

Crystal Violet is an intense stain that binds to the cell nuclei and gives an OD_{595} reading that is proportional to cell number. If you wish to normalize your readings from above simply follow the steps below.

- 1. After reading at 450 nm is complete, wash wells twice with 200 μ l Wash Buffer and 2 times with 200 μ l 1X PBS. Tap plates onto paper towels to remove excess liquid from wells and air-dry at room temperature for 5 minutes.
- 2. Add 100 μ l Crystal Violet solution to each well and incubate 30 minutes at room temperature. **WARNING:** Crystal Violet is an intense stain. Avoid contact with skin and clothing.
- 3. Wash wells 3 times with 200 µl 1X PBS for 5 minutes each.
- 4. Add 100 μ l of 1% SDS Solution to each well and incubate on shaker for 1 hour at room temperature.
- 5. Read absorbance on a spectrophotometer at 595 nm. If the signals obtained are greater than the range of your spectrophotometer, the signal can be reduced by removing some (e.g. 50 μ l) of the liquid from each well and replacing with an equivalent volume of dH₂O.
- 6. The measured OD_{450} readings are corrected for cell number by dividing the OD_{450} reading for a given well by the OD_{595} reading for that well.

Non-Adherent Cell Protocol - Colorimetric Assay

The protocol given above can be modified for use with non-adherent cells by culturing and fixing the cells as follows:

- 1. Treat the 96-well culture plate with 10 μ g/ml poly-L-Lysine for 30 minutes at 37°C. Wash twice for 5 minutes with PBS.
- 2. Seed 17,000 cells/well, or whatever amount is appropriate for your particular cell line.
- Grow and treat cells as desired.
- 4. Fix cells by replacing the growth medium with 100 μ l of 8% formaldehyde in PBS. Incubate 20 minutes at room temperature.
- 5. Continue with Step 1, No. 4 of the Adherent Cell Protocol above.

Protocols - Chemiluminescent Assay

Buffer Preparation and Recommendations

We provide an excess of buffer components in order to perform one 96-well FACE assay with the phospho-ERK antibody and one 96-well FACE assay with the total-ERK antibody. Required reagents that are not supplied are listed on the previous page. Please review the Quick Chart for Preparing Buffers in this section prior to preparing the assay buffers.

Preparation of 1X PBS

1X PBS is the basis of several buffers used in the FACE protocol. 1X PBS is also used in several of the wash steps in the protocol (see the Quick Chart for Preparing Buffers). It is prepared by adding 1 volume of 10X PBS (pH 7.4) to 9 volumes of dH₂O and mixing thoroughly.

Preparation of Fixing Buffer (4% or 8% Formaldehyde in PBS)

Fixing Buffer is used to fix cells after cell culturing. It is prepared by adding formaldehyde to 1X PBS and mixing well. 4% formaldehyde is used with adherent cells, 8% formaldehyde is used with non-adherent cells. The recipe in the Quick Chart for Preparing Buffers is written for use with a stock solution of 37% formaldehyde.

Preparation of Wash Buffer (0.1% Triton X-100 in PBS)

Wash Buffer is used throughout the FACE protocol and is prepared by adding the provided 10% Triton X-100 solution to 1X PBS and mixing thoroughly.

Quenching Buffer (Wash Buffer containing 1% H₂O₂ and 0.1% Azide)

Quenching Buffer is used to inactivate the cells' endogenous peroxidase activity. It is prepared by adding fresh Sodium Azide and fresh hydrogen peroxide to the Wash Buffer.

Blocking Buffer

This is supplied ready-to-use. A small amount of white precipitate may form if thawed in a warm water bath. This does not interfere with buffer function.

Antibody Dilution Buffer

This is supplied ready-to-use. A small amount of white precipitate may form if thawed in a warm water bath. This does not interfere with buffer function.

Diluted phospho-ERK antibody

The phospho-ERK antibody recognizes only the phosphorylated form of the ERKI/2 proteins. The supplied antibody will be diluted 1/500 in Antibody Dilution Buffer (see the Quick Chart for Preparing Buffers in this section).

Diluted total-ERK antibody

The total-ERK antibody recognizes both the non-phosphorylated and the phosphorylated forms of ERKI/2 proteins. The supplied antibody will be diluted 1/500 in Antibody Dilution Buffer (see the Quick Chart for Preparing Buffers in this section).

Diluted HRP-conjugated secondary antibody

HRP-conjugated anti-rabbit IgG is used as the secondary antibody to detect bound primary antibodies. The supplied antibody will be diluted 1/2000 in Antibody Dilution Buffer. (See the Quick Chart for Preparing Buffers in this section).

Preparation of Chemiluminescent Working Solution

The Chemiluminescent Reagent and Reaction Buffer should be warmed to room temperature before use. These components are light sensitive, therefore, we recommend avoiding direct exposure to intense light during storage. Prior to use, place the Chemiluminescent Reagent and Reaction Buffer at room temperature for at least 1 hour. In a separate container, mix 1 volume of Chemiluminescent Reagent with 2 volumes of Reaction Buffer to prepare the Chemiluminescent Working Solution (see the Quick Chart for Preparing Buffers in this section). The Chemiluminescent Working Solution is stable for several hours. After the Chemiluminescent Working Solution is aliquoted into the wells, discard the remaining solution.

1% SDS Solution

1% SDS Solution is used in the Crystal Violet counting procedure to solubilize cells and release the dye for subsequent quantification at 595 nm. This buffer is supplied ready-to-use.

Crystal Violet Solution

This is supplied ready-to-use. Crystal Violet is used to estimate the relative number of cells in each well. This stain binds to cell nuclei and gives an OD_{595} reading that is proportional to cell number.

Quick Chart for Preparing Buffers - Chemiluminescent Assay

Reagents to prepare	Components	1 well	48 wells	96 wells	192 wells
Fixing Buffer for	1X PBS	98 µl	4.7 ml	9.41 ml	18.82 ml
adherent cells	37% Formaldehyde	12 µl	576 μl	1.15 ml	2.30 ml
	TOTAL REQUIRED	110 µl	5.28 ml	10.56 ml	21.12 ml
Fixing Buffer for non-	1X PBS	86.0 µl	4.13 ml	8.26 ml	16.51 ml
adherent cells	37% Formaldehyde	24.0 µl	1.15 ml	2.30 ml	4.61 ml
	TOTAL REQUIRED	110 µl	5.28 ml	10.56 ml	21.12 ml
Wash Buffer	1X PBS	3.376 ml	162 ml	310 ml	620 ml
	10% Triton X-100	34.1 µl	1.64 ml	3.13 ml	6.26 ml
	TOTAL REQUIRED	3.41 ml	163.7 ml	313 ml	626 ml
Quenching Buffer	Wash Buffer	97.9 µl	4.7 ml	9.40 ml	18.8 ml
	10% H ₂ O ₂	11 µl	528 µl	1.06 ml	2.11 ml
	10% Azide	1.1 µl	52.8 µl	106 µl	211 µl
	TOTAL REQUIRED	110 µl	5.28 ml	10.56 ml	21.12 ml
Blocking Buffer	TOTAL REQUIRED	110 µl	5.28 ml	10.56 ml	21.12 ml
Diluted total-ERK	Antibody Dilution Buffer	45 µl	2080 µl	4160 µl	-
antibody	Total-ERK antibody	0.09 µl	4.16 µl	8.32 µl	-
	TOTAL REQUIRED	45.09 μl	2084.16 μl	4168.32 µl	-
Diluted phospho-ERK	Antibody Dilution Buffer	45 µl	2080 µl	4160 µl	-
antibody	Phospho-ERK antibody	0.09 μl	4.16 µl	8.32 µl	-
	TOTAL REQUIRED	45.09 μl	2084.16 μl	4168.32 μl	-
Diluted HRP-con-	Antibody Dilution Buffer	110 µl	5280 μl	10.56 ml	21.12 ml
jugated secondary antibody	HRP-conjugated secondary ab	0.055 µl	2.64 µl	5.28 µl	10.56 µl
	TOTAL REQUIRED	110.05 µl	5282.64 μl	10.565 ml	21.13 ml
1X PBS	10X PBS	154 µl	7.39 ml	14.11 ml	28.22 ml
(for wash steps)	dH ₂ O	1.39 ml	66.53 ml	127.01 ml	254.02 ml
	TOTAL REQUIRED	1.54 ml	73.92 ml	141.12 ml	282.24 ml
Chemiluminescent Working Solution	Chemiluminescent Reagent	18 µl	864 µl	1.728 ml	3.46 ml
	Reaction Buffer	36 µl	1.728 ml	3.456 ml	6.91 ml
	TOTAL REQUIRED	54 µl	2.592 ml	5.184 ml	10.37 ml
1% SDS Solution	TOTAL REQUIRED	110 µl	5.28 ml	10.56 ml	21.12 ml
Crystal Violet Solution	TOTAL REQUIRED	110 µl	5.28 ml	10.56 ml	21.12 ml

Adherent Cell Protocol - Chemiluminescent Assay

PLEASE READ THE ENTIRE PROTOCOL BEFORE STARTING

Step 1: Culture, fix and block cells

- Seed cells in the 96-well plate so that they will be approximately 80% confluent at the time
 of fixing, after they have been treated as desired. The growth area in each well of the 96well plate is 0.32 cm². The provided plates are sterile and treated for tissue culture.
- 2. Grow and treat cells as desired.
- 3. Fix cells by replacing the growth medium with 100 µl of 4% formaldehyde in PBS. To minimize the escape of formaldehyde vapors, place a 10 cm x 17 cm piece of parafilm over the plate and then cover the plate with the lid. The covered plate can also be placed in a ziplock bag. Incubate for 20 minutes at room temperature.

WARNING: Formaldehyde is highly toxic. Confine vapors to a chemical hood and wear appropriate gloves and eye protection when using this chemical.

- 4. Remove formaldehyde solution and wash cells 3 times with 200 μ l Wash Buffer. Each wash step should be performed for 5 minutes with gentle shaking.
- 5. Remove Wash Buffer, add 100 μ l Quenching Buffer and incubate for 20 minutes at room temperature.
- 6. Remove Quenching Buffer and wash cells 2 times for 5 minutes each with 200 μ l Wash Buffer
- 7. Remove Wash Buffer, add 100 μ l Antibody Blocking Buffer and incubate 1 hour at room temperature.

Step 2: Binding of primary and secondary antibodies

NOTE: Depending on experiment design, some wells may be incubated with diluted phospho-ERK antibody, some with total-ERK antibody and some with secondary antibody alone (negative controls). For negative control wells, incubate with 40 µl Antibody Dilution Buffer during primary antibody incubation step.

- 1. Remove Antibody Blocking Buffer and wash cells 2 times with 200 µl Wash Buffer.
- 2. Remove Wash Buffer, add 40 µl of diluted primary antibody (or Antibody Dilution Buffer for negative control wells) and seal plate with sealing tape. Place a 10 cm x 17 cm piece of parafilm over the plate, cover with lid and incubate overnight at 4°C. Be sure that the plate is level and that each well is tightly sealed with the sealing tape to prevent evaporation.
 - **NOTE:** In cells known to generate high amounts of phosphorylated-ERK, a three hour primary antibody incubation is sufficient. For maximum sensitivity an overnight incubation is recommended.
- 3. Remove primary antibody, wash cells 3 times for 5 minutes each with 200 µl Wash Buffer.

- 4. Remove Wash Buffer, add 100 μl diluted secondary antibody, cover plate with tissue culture plate lid or sealing tape, and incubate 1 hour at room temperature.
- 5. During this incubation, place the Chemiluminescent Reagent and Reaction Buffer at room temperature.

Step 3: Chemiluminescent detection

- 1. Remove secondary antibody, wash cells 3 times for 5 minutes with 200 μ l Wash Buffer and then 2 times for 5 minutes with 200 μ l 1X PBS.
- 2. Remove PBS from plate wells and add 50 μ l room temperature Chemiluminescent Working Solution to each well.
- 3. Read chemiluminescence using a luminometer or CCD camera system. Readings should be taken within 10 minutes to minimize changes in signal intensity.

OPTIONAL - Crystal Violet cell staining

Crystal Violet is an intense stain that binds to the cell nuclei and gives an OD_{595} reading that is proportional to cell number. If you wish to normalize your readings from above simply follow the steps below.

- 1. After reading chemiluminescence, wash wells twice with 200 μ l Wash Buffer and 2 times with 200 μ l 1X PBS. Tap plates onto paper towels to remove excess liquid from wells and air-dry at room temperature for 5 minutes.
- 2. Add 100 μ l Crystal Violet solution to each well and incubate 30 minutes at room temperature. **WARNING:** Crystal Violet is an intense stain. Avoid contact with skin and clothing.
- 3. Wash wells 3 times with 200 µl 1X PBS for 5 minutes each.
- 4. Add 100 μ l of 1% SDS Solution to each well and incubate on shaker for 1 hour at room temperature.
- 5. Read absorbance on a spectrophotometer at 595 nm. If the signals obtained are greater than the range of your spectrophotometer, the signal can be reduced by removing some (e.g. 50 μ l) of the liquid from each well and replacing with an equivalent volume of dH₂O.
- 6. The measured OD₅₉₅ readings indicate the relative number of cells in each well. This relative cell number is then used to normalize each reading from Step 3.

Non-Adherent Cell Protocol - Chemiluminescent Assay

The protocol given above is suitable for use with non-adherent cells if the cells are cultured and fixed as follows:

- Treat the 96-well culture plate with 10 µg/ml poly-L-Lysine for 30 minutes at 37°C. Wash twice for 5 minutes with PBS.
- 2. Seed 17,000 cells/well, or whatever amount is appropriate for your particular cell line.
- Grow and treat cells as desired.
- 4. Fix cells by replacing the growth medium with 100 μ l of 8% formaldehyde in PBS. Incubate 20 minutes at room temperature.
- 5. Continue with Step 1, No. 4 of the Adherent Cell Protocol above.

References

- 1. Robinson M.J. and Cobb M.H. (1997) Current Opinion in Cell Biology. 9: 180-186.
- 2. Marshall C.J. (1995) Cell. 80: 179-185.
- 3. Hunter T. (1995) Cell. 80: 225-236.
- 4. Hill C.S and Treisman R. (1995) Cell. 80: 199-211.
- 5. Tilly B.C. et al (1993) J. Biol. Chem. 268: 19919-19922.
- 6. Schafe G.E. (2000) J Neurosci. 20(21): 8177-87.
- Lee J.T. Ir. and McCubrev J.A. (2002) Leukemia. 16(4): 486-507.
- 8. Schett G. et al (2000) Arthritis Rheum. 43(11): 2501-12.
- 9. Versteeg H.H. et al (2000) Biochem J. 350 (Pt 3): 717-22.*
- 10. Brenner B. et al (1997) J. Biol. Chem. 272: 22173-22181.
- 11. Widman C. et al (1999) Physiological Reviews. 79(1): 143-180.
- 12. Giancotti F.G. and Ruoslahti E. (1999) Science: 285: 1028-1032.
- 13. Porter A.C. and Vaillancourt R.R. (1998) Oncogene. 17: 1343-1352.
- 14. Rane S.G. (1999) Adv. Second Messenger Phosphoprotein Res. 33: 107-127.
- 15. Biocarta Pathways website: http://www.biocarta.com/pathfiles/h MAPKPathway.asp
- 16. Biocarta Pathways website: http://www.biocarta.com/pathfiles/h_eif4Pathway.asp
- 17. Pulverer B.J. et al (1991) Nature 353: 670-674.
- 18. Thiels E. and Klann E. (2001) Rev Neurosci. 12(4): 327-45.
- 19. Rosen L.B. et al (1994) Neuron. 12(6): 1207-21.
- 20. Impey S. et al (1999) Neuron. 23(1): 11-4.
- 21. Dash P.K. et al (2002) Neuroscience. 114(3): 755-67.
- 22. Bouschet T. et al (2003) J Biol Chem. 278(7): 4778-85.
- 23. Noshita N. et al (2002) J Neurosci. 22(18): 7923-30.
- 24. Katsanakis K.D. et al (2002) Anticancer Res. 22(2A): 755-9.
- 25. Chang F. et al (2003) Int J Oncol. 22(3): 469-80.
- 26. Kameshita I. and Fujisawa H. (1989) Analytical Biochem. 183: 139-143.

^{*} The FACE method was developed in the laboratory of Dr. Maikel P. Peppelenbosch, Laboratory for Experimental Internal Medicine, Academic Medical Centre, Amsterdam, The Netherlands. We thank Dr. Henri H. Versteeg and Dr. Peppelenbosch for their assistance in developing the FACE Kits.

Appendix

Section A. Troubleshooting Guide

PROBLEM	POSSIBLE CAUSE	RECOMMENDATION
No signal or weak signal in wells incubated with either	Omission of key reagent	Check that all reagents have been added in the correct order
phospho-ERK antibody or total-ERK antibody	Substrate or conjugate is no longer active	Test conjugate and substrate for activity
	Enzyme inhibitor present	Sodium azide will inhibit the peroxidase reaction, follow our recommendations to prepare buffers
	Plate reader or CCD camera set- tings not optimal	Verify the wavelength (measurement mode) and filter settings in the plate reader
	Developing Solution was cold	Bring Developing Solution to room temperature
	Inadequate volume of Developing Solution	Check to make sure that correct volume is delivered by pipette
	Cells do not contain detectable levels of phospho ERK and/or total ERK	Use Western blotting to confirm that cells contain detectable levels of protein(s) of interest. If you do not require all of the included antibodies for FACE assays, they can be used in Colorimetric Western blotting at a 1:400 dilution for the total and a 1:1000 for the phospho antibody
	Insufficient number of cells were plated	Plate cells so that they are 80% confluent at time of fixing
	Cells did not adhere correctly to plate	Follow protocol for use of non-adherent cells
	Cells are not from correct origin	Refer to cross reactivity information on page 5
	Excessive washing	Wash steps should be 5 minutes each
	Incubation of secondary antibody was too long	Incubate secondary antibody for 1 hour
High background in all wells	Developing time too long (Colorimetric Assay)	Stop enzymatic reaction as soon as the positive wells turn medium-dark blue
	Measurement time too long (Chemiluminescent Assay)	Reduce integration time or exposure time on luminometer or CCD camera
	Concentration of antibodies too high	Perform antibody titration to determine optimal working concentration. Start using 1:500 for the phospho- and the total-antibody and 1:2000 for the secondary antibody. The sensitivity of the assay will be decreased
	Inadequate washing	Ensure all wells are filled with Wash Buffer and follow washing recommendations
	Inadequate quenching or blocking	Ensure that quenching and blocking steps were performed according to the protocol

PROBLEM	POSSIBLE CAUSE	RECOMMENDATION
Uneven color develop- ment	Incomplete washing of wells	Ensure all wells are filled with Wash Buffer and follow washing recommendations
	Well cross-contamination	Follow washing recommendations
No signal or weak signal in wells incubated with phos- pho-ERK antibody	Cell culture conditions did not induce phosphorylation of ERK	Perform Western blot with phospho-ERK anti- body to confirm that cells contain detectable levels of phosphorylated ERK
Antibody solution evaporates from well during overnight incubation with primary antibody	Sealing tape was incorrectly applied	Ensure that each well is sealed when sealing tape is applied and ensure that the parafilm sheet covers the plate completely before the lid is placed on the plate. The plate can also be placed in a zip-lock or heat-sealed bag
Insufficient sensitivity	Antibody concentration incorrect	If the cells studied have very low levels of the protein of interest, the sensitivity of detection may be improved by increasing the concentration of primary antibody used and by minimizing the incubation volume. It is possible to perform the overnight incubation in as little as 25 µl, however, this will make multichannel pipetting difficult and requires the plate be carefully sealed and incubated on a level surface. Alternatively, if the cells have easily detectable levels of the phosphorylated protein and the detection of small changes in phosphorylation is desired, sensitivity of the assay may be improved by decreasing the concentration of the phospho antibody used
Poor precision	Cross-well read through	The 96-well plates provided are designed to minimize signal cross-well contamination. If possible, do not use the phospho and total antibodies in adjoining wells. If this is not possible, use the total antibody at a higher dilution

Section B. Related Products

TransAM™ Kits	Unit	Catalog No.
TransAM™ CREB	1 x 96 rxns	42096
	5 x 96 rxns	42596
TransAM™ pCREB	1 x 96 rxns	43096
•	5 x 96 rxns	43596
TransAM [™] c-Myc	1 x 96 rxns	43396
,	5 x 96 rxns	43896
TransAM™ Elk-1	1 x 96 rxns	44396
	5 x 96 rxns	44896
TransAM™ MAPK Family	2 x 96 rxns	47296
TransAM™ STAT Family	2 x 96 rxns	42296
TransAM™ STAT3	1 x 96 rxns	45196
	5 x 96 rxns	45696
TransAM™ IRF Family	2 x 96 rxns	45296

Cell-based ELISAs	Unit	Catalog No.
FACE™ AKT	1 x 96 rxns	48120
	5 x 96 rxns	48620
FACE™ AKT Chemi	1 x 96 rxns	48220
	5 x 96 rxns	48720
FACE™ EGFR (Y992)	1 x 96 rxns	48150
,	5 x 96 rxns	48650
FACE™ EGFR (Y992) Chemi	1 x 96 rxns	48250
	5 x 96 rxns	48750
FACE™ EGFR (Y1173)	1 x 96 rxns	48190
	5 x 96 rxns	48690
FACE™ EGFR (Y1173) Chemi	1 x 96 rxns	48290
, ,	5 x 96 rxns	48790
FACE™ ErbB-2 (Y877)	1 x 96 rxns	48130
•	5 x 96 rxns	48630
FACE™ ErbB-2 (Y877) Chemi	1 x 96 rxns	48230
` ,	5 x 96 rxns	48730
FACE™ ErbB-2 (Y1248)	1 x 96 rxns	48105
, ,	5 x 96 rxns	48605
FACE™ ErbB-2 (Y1248) Chemi	1 x 96 rxns	48205
	5 x 96 rxns	48705
FACE™ JNK	1 x 96 rxns	48110
	5 x 96 rxns	48610
FACE™ JNK Chemi	1 x 96 rxns	48210
	5 x 96 rxns	48710
FACE™ p38	1 x 96 rxns	48100
•	5 x 96 rxns	48600
FACE™ p38 Chemi	1 x 96 rxns	48200
	5 x 96 rxns	48700

Technical Services

If you need assistance at any time, please call Active Motif Technical Service at one of the numbers listed below.

Active Motif North America

1914 Palomar Oaks Way, Suite 150

Carlsbad, CA 92008

USA

Toll Free: 877 222 9543 Telephone: 760 431 1263 Fax: 760 431 1351

E-mail: tech service@activemotif.com

Active Motif Europe

104 Avenue Franklin Roosevelt

B-1330 Rixensart, Belgium

UK Free Phone: 0800 169 31 47
France Free Phone: 0800 90 99 79
Germany Free Phone: 0800 181 99 10
Telephone: +32 (0)2 653 0001
Fax: +32 (0)2 653 0050

E-mail: eurotech@activemotif.com

Active Motif Japan

Azuma Bldg, 7th Floor

2-21 Ageba-Cho, Shinjuku-Ku

Tokyo, 162-0824, Japan

Telephone: +81 3 5225 3638 Fax: +81 3 5261 8733

E-mail: japantech@activemotif.com

Visit Active Motif on the worldwide web at http://www.activemotif.com

At this site:

- Read about who we are, where we are, and what we do
- Review data supporting our products and the latest updates
- Enter your name into our mailing list to receive our catalog, *MotifVations* newsletter and notification of our upcoming products
- · Share your ideas and results with us
- View our job opportunities

Don't forget to bookmark our site for easy reference!